Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cochrane Database Syst Rev ; 9: CD013877, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2013289

ABSTRACT

BACKGROUND: Loss of olfactory function is well recognised as a symptom of COVID-19 infection, and the pandemic has resulted in a large number of individuals with abnormalities in their sense of smell. For many, the condition is temporary and resolves within two to four weeks. However, in a significant minority the symptoms persist. At present, it is not known whether early intervention with any form of treatment (such as medication or olfactory training) can promote recovery and prevent persisting olfactory disturbance. This is an update of the 2021 review with four studies added. OBJECTIVES: 1) To evaluate the benefits and harms of any intervention versus no treatment for people with acute olfactory dysfunction due to COVID-19 infection.  2) To keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the latest search was 20 October 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in people with COVID-19 related olfactory disturbance, which had been present for less than four weeks. We included any intervention compared to no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were the presence of normal olfactory function, serious adverse effects and change in sense of smell. Secondary outcomes were the prevalence of parosmia, change in sense of taste, disease-related quality of life and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome.  MAIN RESULTS: We included five studies with 691 participants. The studies evaluated the following interventions: intranasal corticosteroid sprays, intranasal corticosteroid drops, intranasal hypertonic saline and zinc sulphate.  Intranasal corticosteroid spray compared to no intervention/placebo We included three studies with 288 participants who had olfactory dysfunction for less than four weeks following COVID-19. Presence of normal olfactory function The evidence is very uncertain about the effect of intranasal corticosteroid spray on both self-rated recovery of olfactory function and recovery of olfactory function using psychophysical tests at up to four weeks follow-up (self-rated: risk ratio (RR) 1.19, 95% confidence interval (CI) 0.85 to 1.68; 1 study; 100 participants; psychophysical testing: RR 2.3, 95% CI 1.16 to 4.63; 1 study; 77 participants; very low-certainty evidence).  Change in sense of smell The evidence is also very uncertain about the effect of intranasal corticosteroid spray on self-rated change in the sense of smell (at less than 4 weeks: mean difference (MD) 0.5 points lower, 95% CI 1.38 lower to 0.38 higher; 1 study; 77 participants; at > 4 weeks to 3 months: MD 2.4 points higher, 95% CI 1.32 higher to 3.48 higher; 1 study; 100 participants; very low-certainty evidence, rated on a scale of 1 to 10, higher scores mean better olfactory function). Intranasal corticosteroids may make little or no difference to the change in sense of smell when assessed with psychophysical testing (MD 0.2 points, 95% CI 2.06 points lower to 2.06 points higher; 1 study; 77 participants; low-certainty evidence, 0- to 24-point scale, higher scores mean better olfactory function).  Serious adverse effects The authors of one study reported no adverse effects, but their intention to collect these data was not pre-specified so we are uncertain if these were systematically sought and identified. The remaining two studies did not report on adverse effects.  Intranasal corticosteroid drops compared to no intervention/placebo We included one study with 248 participants who had olfactory dysfunction for ≤ 15 days following COVID-19. Presence of normal olfactory function Intranasal corticosteroid drops may make little or no difference to self-rated recovery at > 4 weeks to 3 months (RR 1.00, 95% CI 0.89 to 1.11; 1 study; 248 participants; low-certainty evidence). No other outcomes were assessed by this study.  Data on the use of hypertonic saline nasal irrigation and the use of zinc sulphate to prevent persistent olfactory dysfunction are included in the full text of the review. AUTHORS' CONCLUSIONS: There is very limited evidence available on the efficacy and harms of treatments for preventing persistent olfactory dysfunction following COVID-19 infection. However, we have identified a number of ongoing trials in this area. As this is a living systematic review we will update the data regularly, as new results become available.


Subject(s)
COVID-19 , Olfaction Disorders , Rhinitis , Adrenal Cortex Hormones/therapeutic use , COVID-19/complications , Chronic Disease , Humans , Olfaction Disorders/etiology , Olfaction Disorders/prevention & control , Randomized Controlled Trials as Topic , Rhinitis/drug therapy , Smell , Zinc Sulfate
2.
Cochrane Database Syst Rev ; 9: CD013876, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2013288

ABSTRACT

BACKGROUND: Olfactory dysfunction is a common consequence of COVID-19 infection and persistent symptoms can have a profound impact on quality of life. At present there is little guidance on how best to treat this condition. A variety of interventions have been suggested to promote recovery, including medication and olfactory training. However, it is uncertain whether any intervention is of benefit. This is an update of the 2021 review with one additional study added.  OBJECTIVES: 1) To evaluate the benefits and harms of any intervention versus no treatment for people with persisting olfactory dysfunction due to COVID-19 infection.  2) To keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the latest search was 20 October 2021.   SELECTION CRITERIA: We included randomised controlled trials (RCTs) in people with COVID-19 related olfactory disturbance that had persisted for at least four weeks. We included any intervention compared to no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were the recovery of sense of smell, disease-related quality of life and serious adverse effects. Secondary outcomes were the change in sense of smell, general quality of life, prevalence of parosmia and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We included two studies with 30 participants. The studies evaluated the following interventions: systemic corticosteroids plus intranasal corticosteroid/mucolytic/decongestant and palmitoylethanolamide plus luteolin.  Systemic corticosteroids plus intranasal corticosteroid/mucolytic/decongestant compared to no intervention We included a single RCT with 18 participants who had anosmia for at least 30 days following COVID-19 infection. Participants received a 15-day course of oral corticosteroids combined with nasal irrigation (consisting of an intranasal corticosteroid/mucolytic/decongestant solution) or no intervention. Psychophysical testing was used to assess olfactory function at 40 days. This is a single, small study and for all outcomes the certainty of evidence was very low. We are unable to draw meaningful conclusions from the numerical results. Palmitoylethanolamide plus luteolin compared to no intervention We included a single RCT with 12 participants who had anosmia or hyposmia for at least 90 days following COVID-19 infection. Participants received a 30-day course of palmitoylethanolamide and luteolin or no intervention. Psychophysical testing was used to assess olfactory function at 30 days. This is a single, small study and for all outcomes the certainty of evidence was very low. We are unable to draw meaningful conclusions from the numerical results. AUTHORS' CONCLUSIONS: There is very limited evidence available on the efficacy and harms of treatments for persistent olfactory dysfunction following COVID-19 infection. However, we have identified a number of ongoing trials in this area. As this is a living systematic review we will update the data regularly, as new results become available.


Subject(s)
COVID-19 , Adrenal Cortex Hormones , Anosmia , COVID-19/complications , Expectorants , Humans , Luteolin , Nasal Decongestants , Randomized Controlled Trials as Topic , Smell
3.
The Cochrane database of systematic reviews ; 2021(3), 2021.
Article in English | EuropePMC | ID: covidwho-1728547

ABSTRACT

Objectives This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects (benefits and harms) of interventions that have been used, or proposed, to prevent persisting olfactory dysfunction due to COVID‐19 infection. A secondary objective is to maintain the currency of the evidence, using a living systematic review approach.

4.
Cochrane Database Syst Rev ; 7: CD013877, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1320059

ABSTRACT

BACKGROUND: Loss of olfactory function is well recognised as a cardinal symptom of COVID-19 infection, and the ongoing pandemic has resulted in a large number of affected individuals with abnormalities in their sense of smell. For many, the condition is temporary and resolves within two to four weeks. However, in a significant minority the symptoms persist. At present, it is not known whether early intervention with any form of treatment (such as medication or olfactory training) can promote recovery and prevent persisting olfactory disturbance.  OBJECTIVES: To assess the effects (benefits and harms) of interventions that have been used, or proposed, to prevent persisting olfactory dysfunction due to COVID-19 infection. A secondary objective is to keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane COVID-19 Study Register; Cochrane ENT Register; CENTRAL; Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished studies. The date of the search was 16 December 2020. SELECTION CRITERIA: Randomised controlled trials including participants who had symptoms of olfactory disturbance following COVID-19 infection. Individuals who had symptoms for less than four weeks were included in this review. Studies compared any intervention with no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were the presence of normal olfactory function, serious adverse effects and change in sense of smell. Secondary outcomes were the prevalence of parosmia, change in sense of taste, disease-related quality of life and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome.  MAIN RESULTS: We included one study of 100 participants, which compared an intranasal steroid spray to no intervention. Participants in both groups were also advised to undertake olfactory training for the duration of the trial. Data were identified for only two of the prespecified outcomes for this review, and no data were available for the primary outcome of serious adverse effects. Intranasal corticosteroids compared to no intervention (all using olfactory training) Presence of normal olfactory function after three weeks of treatment was self-assessed by the participants, using a visual analogue scale (range 0 to 10, higher scores = better). A score of 10 represented "completely normal smell sensation". The evidence is very uncertain about the effect of intranasal corticosteroids on self-rated recovery of sense of smell (estimated absolute effect 619 per 1000 compared to 520 per 1000, risk ratio (RR) 1.19, 95% confidence interval (CI) 0.85 to 1.68; 1 study; 100 participants; very low-certainty evidence).  Change in sense of smell was not reported, but the self-rated score for sense of smell was reported at the endpoint of the study with the same visual analogue scale (after three weeks of treatment). The median scores at endpoint were 10 (interquartile range (IQR) 9 to 10) for the group receiving intranasal corticosteroids, and 10 (IQR 5 to 10) for the group receiving no intervention (1 study; 100 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS: There is very limited evidence regarding the efficacy of different interventions at preventing persistent olfactory dysfunction following COVID-19 infection. However, we have identified a small number of additional ongoing studies in this area. As this is a living systematic review, the evidence will be updated regularly to incorporate new data from these, and other relevant studies, as they become available.  For this (first) version of the living review, we identified a single study of intranasal corticosteroids to include in this review, which provided data for only two of our prespecified outcomes. The evidence was of very low certainty, therefore we were unable to determine whether intranasal corticosteroids may have a beneficial or harmful effect.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , COVID-19/complications , Mometasone Furoate/administration & dosage , Olfaction Disorders/drug therapy , Phytotherapy/methods , Administration, Intranasal , Bias , Citrus , Confidence Intervals , Humans , Olfaction Disorders/etiology , Olfaction Disorders/prevention & control , Recovery of Function , Syzygium , Visual Analog Scale
5.
Cochrane Database Syst Rev ; 7: CD013876, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1320058

ABSTRACT

BACKGROUND: Olfactory dysfunction is an early and sensitive marker of COVID-19 infection. Although self-limiting in the majority of cases, when hyposmia or anosmia persists it can have a profound effect on quality of life. Little guidance exists on the treatment of post-COVID-19 olfactory dysfunction, however several strategies have been proposed from the evidence relating to the treatment of post-viral anosmia (such as medication or olfactory training). OBJECTIVES: To assess the effects (benefits and harms) of interventions that have been used, or proposed, to treat persisting olfactory dysfunction due to COVID-19 infection. A secondary objective is to keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane COVID-19 Study Register; Cochrane ENT Register; CENTRAL; Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished studies. The date of the search was 16 December 2020. SELECTION CRITERIA: Randomised controlled trials including participants who had symptoms of olfactory disturbance following COVID-19 infection. Only individuals who had symptoms for at least four weeks were included in this review. Studies compared any intervention with no treatment or placebo. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Primary outcomes were the recovery of sense of smell, disease-related quality of life and serious adverse effects. Secondary outcomes were the change in sense of smell, general quality of life, prevalence of parosmia and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We included one study with 18 participants, which compared the use of a 15-day course of oral steroids combined with nasal irrigation (consisting of an intranasal steroid/mucolytic/decongestant solution) with no intervention. Psychophysical testing was used to assess olfactory function at baseline, 20 and 40 days. Systemic corticosteroids plus intranasal steroid/mucolytic/decongestant compared to no intervention Recovery of sense of smell was assessed after 40 days (25 days after cessation of treatment) using the Connecticut Chemosensory Clinical Research Center (CCCRC) score. This tool has a range of 0 to 100, and a score of ≥ 90 represents normal olfactory function. The evidence is very uncertain about the effect of this intervention on recovery of the sense of smell at one to three months (5/9 participants in the intervention group scored ≥ 90 compared to 0/9 in the control group; risk ratio (RR) 11.00, 95% confidence interval (CI) 0.70 to 173.66; 1 study; 18 participants; very low-certainty evidence). Change in sense of smell was assessed using the CCCRC score at 40 days. This study reported an improvement in sense of smell in the intervention group from baseline (median improvement in CCCRC score 60, interquartile range (IQR) 40) compared to the control group (median improvement in CCCRC score 30, IQR 25) (1 study; 18 participants; very low-certainty evidence). Serious adverse events andother adverse events were not identified in any participants of this study; however, it is unclear how these outcomes were assessed and recorded (1 study; 18 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS: There is very limited evidence available on the efficacy and harms of treatments for persistent olfactory dysfunction following COVID-19 infection. However, we have identified other ongoing trials in this area. As this is a living systematic review we will update the data regularly, as new results become available. For this (first) version of the living review we identified only one study with a small sample size, which assessed systemic steroids and nasal irrigation (intranasal steroid/mucolytic/decongestant). However, the evidence regarding the benefits and harms from this intervention to treat persistent post-COVID-19 olfactory dysfunction is very uncertain.


Subject(s)
COVID-19/complications , Expectorants/administration & dosage , Glucocorticoids/administration & dosage , Nasal Decongestants/administration & dosage , Olfaction Disorders/drug therapy , Administration, Oral , Ambroxol/administration & dosage , Betamethasone/administration & dosage , Bias , Humans , Nasal Lavage/methods , Olfaction Disorders/etiology , Prednisone/administration & dosage , Prevalence , Quality of Life , Recovery of Function , Smell/drug effects , Time Factors
6.
Cochrane Database Syst Rev ; 9: CD013626, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-959059

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of HCWs are irrigated with antimicrobial solutions, this may help reduce the risk of active infection being passed from infected patients to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves, or alterations in the natural microbial flora of the mouth or nose. Understanding these possible side effects is particularly important when the HCWs are otherwise fit and well. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays used by healthcare workers (HCWs) to protect themselves when treating patients with suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed randomised controlled trials (RCTs). We therefore planned to include the following types of studies: RCTs; quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to HCWs, with or without the same intervention being given to the patients with COVID-19. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) viral content of aerosol, when present (if intervention administered to patients); 4) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 5) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified three ongoing studies (including two RCTs), which aim to enrol nearly 700 participants. The interventions included in these trials are povidone iodine, nitric oxide and GLS-1200 oral spray (the constituent of this spray is unclear and may not be antimicrobial in nature).   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by two RCTs and a non-randomised study. We are concerned that only one of the ongoing studies specifically states that it will evaluate adverse events and it is not clear if this will include changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular, where those receiving the intervention are otherwise fit and well, it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/transmission , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/transmission , Anti-Infective Agents/adverse effects , COVID-19 , Coronavirus Infections/prevention & control , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Therapeutic Irrigation
7.
Cochrane Database Syst Rev ; 9: CD013627, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-791634

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of patients with infection are irrigated with antimicrobial solutions, this may help the patients by killing any coronavirus present at those sites. It may also reduce the risk of the active infection being passed to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to both the patients and the HCWs caring for them. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered with any frequency or dosage to suspected/confirmed COVID-19 patients. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) RECOVERY* (www.recoverytrial.net) outcomes in patients (mortality; hospitalisation status; use of ventilation; use of renal dialysis or haemofiltration); 2) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 3) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 4) change in COVID-19 viral load in patients; 5) COVID-19 viral content of aerosol (when present); 6) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 7) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified 16 ongoing studies (including 14 RCTs), which aim to enrol nearly 1250 participants. The interventions included in these trials are ArtemiC (artemisinin, curcumin, frankincense and vitamin C), Citrox (a bioflavonoid), cetylpyridinium chloride, chlorhexidine, chlorine dioxide, essential oils, hydrogen peroxide, hypertonic saline, Kerecis spray (omega 3 viruxide - containing neem oil and St John's wort), neem extract, nitric oxide releasing solution, povidone iodine and saline with baby shampoo.  AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by a number of RCTs and other studies. We are concerned that few of the ongoing studies specifically state that they will evaluate adverse events such as changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/therapy , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/therapy , Anti-Infective Agents/adverse effects , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Therapeutic Irrigation
8.
Cochrane Database Syst Rev ; 9: CD013628, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-774574

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. The risks of transmission of infection are greater when a patient is undergoing an aerosol-generating procedure (AGP). Not all those with COVID-19 infection are symptomatic, or suspected of harbouring the infection. If a patient who is not known to have or suspected of having COVID-19 infection is to undergo an AGP, it would nonetheless be sensible to minimise the risk to those HCWs treating them. If the mouth and nose of an individual undergoing an AGP are irrigated with antimicrobial solutions, this may be a simple and safe method of reducing the risk of any covert infection being passed to HCWs through droplet transmission or direct contact. Alternatively, the use of antimicrobial solutions by the HCW may decrease the chance of them acquiring COVID-19 infection. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves or alterations in the natural microbial flora of the mouth or nose. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to HCWs and/or patients when undertaking AGPs on patients without suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed RCTs. We therefore planned to include the following types of studies: randomised controlled trials (RCTs); quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to the patient or HCW before and/or after an AGP. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs or patients; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) COVID-19 viral content of aerosol (when present); 4) change in COVID-19 viral load at site(s) of irrigation; 5) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 6) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review.   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review, nor any ongoing studies. The absence of completed studies is not surprising given the relatively recent emergence of COVID-19 infection. However, we are disappointed that this important clinical question is not being addressed by ongoing studies.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/transmission , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/transmission , Administration, Intranasal , Air Microbiology , Anti-Infective Agents/adverse effects , Asymptomatic Infections/therapy , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2
9.
adult aerosol antiinfective agent article controlled study coronavirus disease 2019 health care personnel human mouthwash nose spray ; 2020(Cochrane Database of Systematic Reviews)
Article in English | WHO COVID | ID: covidwho-629202

ABSTRACT

Objectives: This is a protocol for a Cochrane Review (intervention). The objectives are as follows:. To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays administered to healthcare workers (HCWs) and/or patients when undertaking aerosol-generating procedures (AGPs) on patients without suspected or confirmed COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL